
Micro III - June 2017 (Solution Guide)

1. Consider the following gameG, where Player 1 chooses the row and Player 2 simultaneously
chooses the column.

Player 1

Player 2
D E F

A 7, 7 0, 1 0, 3
B 2, 2 3, 3 0, 0
C 8,−1 2, 0 1, 1

(a) Show which strategies in G are eliminated by following the procedure of ‘Iterated
Elimination of Strictly Dominated Strategies’.

SOLUTION: A is strictly dominated by C for Player 1, and can therefore be elim-
inated. After eliminating A, D is strictly dominated by E for Player 2, and can
therefore be eliminated. No other strategy is strictly dominated for either player.

(b) Find all Nash equilibria (NE), pure and mixed, in G. Show which NE gives the high-
est payoff to both players, and denote this equilibrium strategy profile by e(1).

SOLUTION: There are two NE in pure strategies: (B,E) and (C,F ). There is also a
mixed strategy NE, where Player 1 plays B with probability 1/4 and C with probability
3/4, and where Player 2 plays E with probability 1/2 and F with probability 1/2. The
NE (B,E) gives the highest payoff to both players. Hence, e(1) = (B,E).

(c) Now consider the game G(2), which consists of the stage game G repeated two times.
Assume that players discount period-2 payoffs with factor δ ≥ 1/2. Define the average
payoff of player i ∈ {1, 2} in G(2) as (πi,1 + πi,2)/(1 + δ), where πi,t refers to player
i’s payoff in period t.

Find one pure strategy Subgame Perfect Nash Equilibrium (SPNE) where both play-
ers earn an average payoff that is strictly higher than their payoff in e(1). (NOTE:
make sure to consider deviations in any subgame). Denote the equilibrium strategy
profile you found by e(2).

SOLUTION: Consider the following strategy s1 for Player 1: ‘Play A in period 1.
Play B in period 2 if the period-1 outcomes was (A,D), and otherwise play C.’ Con-
sider the following strategy s2 for Player 2: ‘Play D in period 1. Play E in period 2 if
the period-1 outcome was (A,D), and otherwise play F .’ The strategy profile (s1, s2)
implies NE play in period 2, in every subgame, so no deviation in period 2 can be
profitable. To establish that (s1, s2) is a SPNE, it remains to show that no player has
an incentive to deviate in period 1. Both players earn 7 + 3δ on the equilibrium path.
Player 2’s payoff from deviating in period 1 can be no higher than 3 + δ, so such a
deviation cannot be profitable. Player 1’s payoff from deviating in period 1 can be no
higher than 8 + δ, and such a deviation cannot be profitable when δ ≥ 1/2. Hence,
(s1, s2) is a SPNE. Finally, since (7 + 3δ)/(1 + δ) > 3, both players earn a strictly
higher average payoff than in e(1). It follows that we can write e(2) = (s1, s2).

(d) Now consider the game G(∞), which consists of the stage game G repeated infinitely
many times. Continue to assume that players discount future payoffs with factor



δ ≥ 1/2. Define the average payoff of player i ∈ {1, 2} as (
∑∞

t=1 δ
t−1πi,t)(1 − δ),

where πi,t refers to player i’s payoff in period t.

Find one pure strategy SPNE where both players earn an average payoff that is strictly
higher than they earned in e(2).

SOLUTION: Consider the following strategy Trigger1 for Player 1: ‘In period 1,
play A. In any period t ≥ 2, play A if (A,D) was the outcome of play in all periods
t′ < t; otherwise, play C.’ Consider the following strategy Trigger2 for Player 2: ‘In
period 1, play D. In any period t ≥ 2, play D if (A,D) was the outcome of play
in all periods t′ < t; otherwise, play F .’ The strategy profile (Trigger1, T rigger2)
implies NE play in every subgame after a deviation, so no deviation can be profitable
off the equilibrium path. To rule out deviations on the equilibrium path, it is suffi-
cient to consider both players’ incentive to deviate in period 1. Both players earn
7/(1− δ) on the equilibrium path. Player 2’s payoff from deviating in period 1 can be
no higher than 3+δ/(1−δ), so such a deviation cannot be profitable. Player 1’s payoff
from deviating in period 1 can be no higher than 8 + δ/(1− δ), and such a deviation
cannot be profitable when δ ≥ 1/2. Hence, (Trigger1, T rigger2) is a SPNE. Since
7 > (7 + 3δ)/(1 + δ), both players earn a strictly higher average payoff than in e(2).
It follows that we can write e(∞) = (Trigger1, T rigger2).

2. Consider the following signaling game. At each terminal node, the first number refers to
the payoff of the Sender, and the second number refers to the payoff of the Receiver.

                      xw , 1                     0 , 1 

 Duel             p        Quiche   t = Wimpy       Beer          q        Duel 

 No             No 

               2 + xw , 0                                         0.1                   2 , 0   

                   0 , -1                Nature                  xt , - 1 

 Duel                0.9             Duel 

 No               No 

                   2 , 0 Quiche    t =  Tough       Beer                2 + xt , 0 

In words, the Sender must decide what to have for breakfast: quiche or beer. The Sender
is either wimpy or tough. All else being equal, a wimpy type prefers quiche over beer,
where xw > 0 captures the intensity of this preference. Similarly, the tough type prefers
beer over quiche, where xt > 0 captures the intensity of this preference. The values of xt

and xw are common knowledge. The Receiver observes what the Sender has for breakfast,
and must then decide whether to challenge him to a duel. The Receiver only benefits from
challenging (i.e. he wins the duel) if the Sender is wimpy. The Sender never benefits from
being challenged, regardless of his type.

(a) Suppose for this subquestion that xw = 1 and xt = 1. Does a separating PBE exist
in this game (yes or no)?



SOLUTION: No. In any separating equilibrium, the wimpy type will be challenged
to a duel. He has a profitable deviation - to change his choice of breakfast and avoid
being challenged.

(b) Explain for what values of xw > 0 and xt > 0 does a pooling PBE exist where both
Sender types have beer, and find one such equilibrium. Explain for what values of
xw > 0 and xt > 0 does a pooling PBE exist where both Sender types have quiche,
and find one such equilibrium. Intuitively, why can the intensity of the Sender’s pref-
erence over breakfast be important in a pooling equilibrium?

SOLUTION: First consider a PBE where the Sender pools on Beer, with beliefs
q = 0.1 on the equilibrium path. It is straightforward to check that the Receiver’s best
response to Beer is No, given these beliefs. Thus, the tough type earns 2 + xt > 2 on
the equilibrium path, and has no incentive to deviate. The wimpy type earns 2 on the
equilibrium path. He has no incentive to deviate if and only if both (i) xw ≤ 2, and
(ii) the Receiver responds to Quiche by playing Duel. This response is optimal for the
Receiver if p ≥ 1/2. Thus, the PBE is (BeerBeer,DuelNo; p ≥ 1/2, q = 0.1), when-
ever 0 < xw ≤ 2 and 0 < xt. Now consider a PBE where the Sender pools on Quiche,
with beliefs p = 0.1 on the equilibrium path. Just as above, the Receiver’s optimal ac-
tion is No on the equilibrium path. The wimpy type earns 2 + xw > 2 in equilibrium,
and has no incentive to deviate. The tough type earns 2 on the equilibrium path.
By the same logic as above, the PBE is (QuicheQuiche,NoDuel; p = 0.1, q ≥ 1/2),
whenever 0 < xw and 0 < xt ≤ 2. Intuitively, in a pooling equilibrium, the Sender
never faces a duel. But the Sender type who dislikes the breakfast he eats in equilib-
rium will want to deviate if the gains from eating his preferred breakfast outweigh the
losses from being challenged to a duel. This means, for a pooling equilibrium to exist,
the Sender’s preference for one breakfast over another cannot be too strong.

(c) Now suppose again that xw = 1 and xt = 1. Using your answers in part (a) and
(b), and referring to Signaling Requirements 5 and 6, what equilibrium do you think
is the most likely to be played? What will the Sender have for breakfast? Will the
Receiver to end up challenging the Sender to a duel?

SOLUTION: The answers in (a) and (b) identify two equilibria when xw = 1 and
xt = 1: (BeerBeer,DuelNo; p ≥ 1/2, q = 0.1), and (QuicheQuiche;NoDuel, p =
0.1, q ≥ 1/2). Both equilibria satisfy Signaling Requirement 5, since no message is
strictly dominated for either type. Pooling on Quiche does not satisfy Signaling Re-
quirement 6, since Beer is equilibrium dominated for the weak type but not the tough
type. Pooling on Beer satisfies Signaling Requirement 6 if p = 1, since Quiche is
equilibrium dominated for the tough type but not the wimpy type. This suggests that
pooling on Beer is the most reasonable equilibrium. Thus, the most likely outcome is
that the Sender has beer for breakfast, regardless of his type, and the Receiver does
not challenge him to a duel.

3. Two consumers are considering whether to buy a product that exhibits network effects.
The payoff from buying depends on the choice of the other consumer. That is, for each
consumer i ∈ {1, 2}, the payoff Ui from buying depends on three terms: the consumer’s
type, θi, which represents his intrinsic valuation of the product; a potential network payoff
λ > 0, which consumer i only obtains if consumer j 6= i also buys; and the price p.
Specifically, buying yields Ui = θi + λ − p if consumer j also buys, or Ui = θi − p if
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consumer j does not. Not buying the product gives a payoff of zero. Each consumer’s type
is drawn from a uniform distribution on [0, 1] and is private information. For all parts of
this question, you can assume the following parameter values: λ = 1/4 and p = 1/2.

(a) Suppose consumers must simultaneously decide whether or not to buy, so the strate-
gic situation they face can be seen as a static game of incomplete information. The
Bayesian-Nash equilibrium of this game will be characterized by a threshold value of
θ ∈ (0, 1), which you can label as θ∗. What is the equilibrium probability that each
consumer buys the product, in the Bayesian-Nash equilibrium of this game?

SOLUTION: The incentive to buy is increasing in type, so the equilibrium will have
a threshold structure: type θi will buy if and only if θi ≥ θ∗, for some cutoff θ∗. From
the perspective of consumer i, the probability that consumer j buys is therefore 1−θ∗,
so the expected payoff from buying is θi +λ(1−θ∗)−p. Consumer i will be indifferent
about buying if θi = θ∗. This gives the condition θ∗+ 1

4(1−θ∗)− 1
2 = 0, or equivalently

θ∗ = 1/3. The probability that each consumer buys is therefore 2/3.

(b) Now consider the following modified situation. Consumer 1 is given the product for
free. Consumer 2 knows this, and understands that his own payoff from buying is
U2 = θ2 +λ−p for sure. Think of the strategic situation facing consumer 2 as a static
game (with only one player). What is the equilibrium probability that consumer 2
buys the product, in the (Bayesian-Nash) equilibrium of this game? Briefly comment
on any difference with your answer in part (a).

SOLUTION: Consumer 2 buys if and only if θ2 + 1
4 −

1
2 ≥ 0, or equivalently θ2 ≥ 1

4 .
The probability that consumer 2 buys is therefore 3/4. This probability is higher than
in part (a). Intuitively, consumer 2 now knows for sure that he will enjoy a positive
network payoff from buying the product, which increases his incentive to buy.

(c) One way to interpret part (a) is that the firm selling the product follows a ‘standard’
marketing approach, where it releases the product simultaneously to both consumers.
One way to interpret part (b) is that the firm follows a ‘seeding’ marketing approach,
giving away the product to one consumer for free, in the hopes of convincing the other
consumer to buy. Given these interpretations, and using your answers in parts (a)
and (b) to calculate firm revenues, argue whether a ‘standard’ or a ‘seeding’ approach
is more profitable in this situation, and briefly explain why this is the case.

SOLUTION: Part (a) implies expected revenues of 2 ∗ (2/3) = 4/3. Part (b) im-
plies expected revenues of 1 ∗ (3/4) = 3/4. Hence, in this particular situation, a
standard approach is more profitable. By giving away the product to some consumers,
a seeding approach reduces the size of the effective market (bad for revenue), but in-
creases the probability that those consumers remaining in the market will buy (good
for revenue). In this particular situation, the former effect dominates the latter, so
that seeding is not profitable.
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